GASNet Specification

Version 1.4

Released June 28th, 2003
$Date: 2003/06/29 08:09:41 $
Printed 29 June 2003
$Revision: 1.25 $

Editor: Dan Bonachea bonachea@cs.berkeley.edu

http://www.cs.berkeley.edu/ bonachea/gasnet

mailto:bonachea@cs.berkeley.edu
http://www.cs.berkeley.edu/~bonachea/gasnet

This the GASNet specification, version 1.4.

Copyright (©) 2002, Dan Bonachea.
Selected portions adapted from:

e A. Mainwaring and D. Culler, "Active Message Applications Programming Interface and Communication
Subsystem Organization", U.C. Berkeley Computer Science Technical Report, 1996.

e D. Culler et al., "Generic Active Message Interface Specification v1.1", U.C. Berkeley Computer Science
Technical Report, Feb, 1995.

Permission is granted to freely distribute this specification and use it in creating GASNet clients
or implementations. The authoritative version of the GASNet specification is maintained by Dan
Bonachea and any proposed changes should be submitted for review.

Published by LBNL FTG and U.C. Berkeley

Table of Contents

1 Introduction........... ...t iiiiiniiiiniieeennns 1
Lol S COPE - ettt e 1
1.2 Organization.t e 1
1.3 Conventions 1
1.4 Definitions.o 2
1.5 Configuration of GASNet 2
1.6 BrrOrS . o o 3

1.6.0.1 gasnet_ErrorName, gasnet_ErrorDesc 3
1.7 GASNE Ty PeS . ottt ettt e e e e 3
1.8 Compile-time constants. i 4
1.9 General NOtESot 4

2 Core API. ... i i e 5

2.1 Job Control Interface...... 5
2.1.0.1 gasnet_init.......... ... 6

2.1.0.2 gasnet_attach........... 6

2.1.0.3 gasnet_getMaxLocalSegmentSize 8

2.1.0.4 gasnet_getMaxGlobalSegmentSize 8

2.1.0.5 gasnet_exit 8

2.2 Job Environment QUeries i 8
2.2.0.1 gasnet_mynode. ... 8

2.2.0.2 gasnet nodes. 8

2.2.0.3 gasnet_getSegmentInfo......... L. 9

2.2.04 gasnet_getenv...... 9

2.3 Active Messaging Interface. o 9
2.3.1 Active Message Categoriesooo e 10

2.3.2 Active Message Size Limits. 11

2.3.2.1 gasnet_, AMMAXATESot 11

2.3.2.2 gasnet AMMaxMedium. 11

2.3.2.3 gasnet_ AMMaxLongRequest 11

2.3.2.4 gasnet_ AMMaxLongReply, 11

2.3.3 Active Message Request Functions 11

2.3.3.1 gasnet_AMRequestShortM, 11

2.3.3.2 gasnet_AMRequestMediumM, 11

2.3.3.3 gasnet_AMRequestLongM 12

2.3.3.4 gasnet_AMRequestLongAsyncM................. 12

2.3.4 Active Message Reply Functions 12

2.3.4.1 gasnet_ AMReplyShortM 13

2.3.4.2 gasnet_AMReplyMediumM, 13

2.3.4.3 gasnet_ AMReplyLongM 13

2.3.5 Misc. Active Message Functions 13

2.35.1 gasnet, AMPoll. 13

2.3.5.2 GASNET BLOCKUNTIL ... 14

2.3.5.3 gasnet_,AMGetMSgSourcet 14

2.4 Atomicity Control. 14
2.4.1 Atomicity semantics of handlers 15

2.4.2 No-Interrupt Sections - Ensuring signal-safety for handlers............. 15

2.4.2.1 gasnet_hold_interrupts, gasnet_resume_interrupts.............. 15

2.4.3 Restrictions on No-Interrupt Sections 16

2.4.4 Handler-Safe Locks 16

2.4.4.1 gasnet_hslt. 16

2.4.4.2 gasnet_hsl_init, gasnet_hsl.destroy 16
2.4.4.3 gasnet_hsl lock, gasnet_hsl.unlock 17
2.4.5 Restrictions on Handler-Safe Locks............. 17
3 Extended API, 19
3.1 Memory-to-memory Data Transfer Functions.................. 19
3.2 Blocking memory-to-memory Transfers 19
3.2.0.1 gasnet_get, gasnet_ put........ il 19
3.2.0.2 gasnet_get_bulk, gasnet put_bulk 19
3.2.0.3 gasnet_memset 19
3.3 Non-blocking memory-to-memory transfers.................. 20
3.3.1 Synchronization semantics of non-blocking data transfers.............. 20
3.3.2 Non-blocking memory-to-memory transfers (explicit handle) 20
3.3.2.1 gasnet_get_nb, gasnet_putnb............ L 21
3.3.2.2 gasnet_get_nb_bulk, gasnet_put_nb_bulk 21
3.3.2.3 gasnet_memset_nb...... ... 21
3.3.3 Synchronization for explicit-handle non-blocking operations: 21
3.3.3.1 gasnet_wait_syncnb, gasnet_try_syncnb....................... 21
3.3.3.2 gasnet_wait_syncnb_all, gasnet_try_syncnb_all................. 22
3.3.3.3 gasnet_wait_syncnb_some, gasnet_try_syncnb_some 22
3.3.4 Non-blocking memory-to-memory transfers (implicit handle)........... 22

3.3.4.1 gasnet_get_nbi, gasnet_put_nbi, gasnet_get_nbi_bulk,
gasnet_put_nbi_bulk, gasnet_ memset nbi 22
3.3.5 Synchronization for implicit-handle non-blocking operations: 23

3.3.5.1 gasnet_wait_syncnbi_gets, gasnet_wait_syncnbi_puts,

gasnet_wait_syncnbi_all, gasnet_try_syncnbi_gets,

gasnet_try_syncnbi_puts, gasnet_try_syncnbiall 23
3.3.6 Implicit access region synchronization............................. ... 24
3.3.6.1 gasnet_begin_nbi_accessregion, gasnet_end_nbi_accessregion 24
3.4 Register-memory operations.o.uitne it 24
3.4.1 Value Put. 25
3.4.1.1 gasnet_put_val, gasnet_put_nb_val, gasnet_put_nbi_val 25
3.4.2 Blocking Value Get...... ... 25
3.4.2.1 gasnet_getval...... 25
3.4.3 Non-Blocking Value Get (explicit-handle)............................. 25
3.4.3.1 gasnet_get_nb_val, gasnet_wait_syncnb_valget 25
3.0 BarTiers . . oo 26
3.5.0.1 gasnet_barriernotify 26
3.5.0.2 gasnet_barrier_wait 26
3.5.0.3 gasnet_barriertry 26
3.6 Thread-identification optimization: 27
3.6.0.1 GASNET_GET_THREADINFO......... 27
3.6.0.2 GASNET_POST_THREADINFO.......... 27
3.6.0.3 GASNET_BEGIN_FUNCTION 27
Appendix A Notes.......oiiiiiiiiiiiiiiiiiiiiiinnnnnnn. 28
A.1 Open Issues in the GASNet Specification 28
A.2 Collective Operations (not yet supported) 28
A.3 Core API Active Messaging Functions - differences from Active Messages 2.0.... 28
A.4 Discarded Design Ideas (not part of spec) 29
A5 Active Message Categories - Alternate formulation of AM (not part of spec).. ... 29
Concept Indexttt ittennnnnnnnns 31

ii

Function, Macro and Type Index

iii

Chapter 1: Introduction 1

1 Introduction

1.1 Scope

This GASNet specification describes a network-independent and language-independent high-performance com-
munication interface intended for use in implementing the runtime system for global address space languages (such
as UPC or Titanium). GASNet stands for "Global-Address Space Networking".

1.2 Organization

The interface is divided into 2 layers - the GASNet core API and the GASNet extended API:

e The extended API is a richly expressive and flexible interface that provides medium and high-level operations
on remote memory and collective operations (basically anything that we could imagine being implemented
using hardware support on some NIC’s).

e The core API is a narrow interface based on the Active Messages paradigm, which is general enough to
implement everything in the extended API.

The core API is the minimum interface that must be implemented on each network when porting to a new
system, and we provide a network-independent reference implementation of the extended API which is written
purely in terms of the core API to ease porting and quick prototyping. Implementors for NIC’s that provide some
hardware support for higher-level messaging operations (e.g. support for servicing remote reads/writes on the NIC
without involving the main CPU) are encouraged to also implement an appropriate subset of the extended API
directly on the network of interest (bypassing the core API) to achieve maximal performance for those operations
(but this is an optimization and is not required to have a working system). Most clients will use calls to the extended
API functions to implement the bulk of their communication work (thereby ensuring optimal performance across
platforms). However the client is also permitted to use the core active message interface to implement non-trivial
language-specific or compiler-specific communication operations which would not be appropriate in a language-
independent API (e.g. implementing distributed language-level locks, distributed garbage collection, collective
memory allocation, etc.).

Note the extended API interface is meant primarily as a low-level compilation target, not a library for hand-
written code - as such, the goals of expressiveness and performance generally take precedence over readability and
minimality.

1.3 Conventions

e All GASNet entry points are lower-case identifiers with the prefix gasnet_
e All constants are upper-case and preceded with the prefix GASNET_
e Clients access the GASNet interface by including the header ‘gasnet.h’ and linking the appropriate library

e Except where otherwise noted, any of the operations in the GASNet interface could be implemented using
macros or inline functions in an actual implementation - they are specified using function declaration syntax
below to make the types clear, and all correct client code must type check using the definitions below. In
no case should client code assume it can create a "function pointer" to any of these operations. Any macro
implementations will ensure that arguments are evaluated exactly once.

e Implementation-specific values in declarations are indicated using "?777"

e Sections marked "Implementor’s note" are recommendations to implementors and are not part of the speci-
fication

Chapter 1: Introduction 2

1.4 Definitions

e node - An OS-level process which returns from gasnet_init(), and its associated local memory space and
system resources. The basic unit of control when interfacing with GASNet.

e thread - A single thread of control within a GASNet node, which possibly shares a virtual memory space
and OS-level process-id with other threads in the node. Clients which may concurrently call GASNet from
more than a single thread must compile to the multi-threaded version of the GASNet library. Except where
otherwise noted, GASNet makes no distinction between the threads within a multi-threaded node, and all
control functions (e.g. barriers) should be executed by a single thread on the node on behalf of all local
threads.

e job - The collection of nodes making up a parallel execution environment. Nodes often correspond to physical,
architectural units, but this need not be the case (e.g. nodes may share a physical CPU/memory/NIC in
multiprogrammed systems with sufficient sharable resources - note that some GASNet implementations may
limit the number nodes which can run concurrently on a single system based on the number of physical
network interfaces)

1.5 Configuration of GASNet

Client code must #define exactly one of GASNET_PAR, GASNET_PARSYNC or GASNET_SEQ when compiling the
GASNet library and the client code (before including ‘gasnet.h’) to indicate the threading environment.

GASNET_PAR
The most general configuration. Indicates a fully multi-threaded and thread-safe environment - the
client may call GASNet concurrently from more than one thread. The exact threading system in use
is system-specific, although for obvious reasons both GASNet and the client code must agree on the
threading system - unless otherwise noted, the default mechanism is POSIX threads.

GASNET_PARSYNC
Indicates a multi-threaded but non-concurrent (non- threadsafe) GASNet environment, where multiple
client threads may call GASNet, but their accesses to GASNet are fully serialized (e.g. by some level
of synchronization above the GASNet interface). GASNet may safely assume that it will never be
called from more than one client thread concurrently (and the client must ensure this property holds).
Client code must still use GASNet No-Interrupt Sections and Handler-Safe Locks to ensure correct
operation.

GASNET_SEQ
Indicates a single-threaded, non-threadsafe environment. GASNet may safely assume that it will only
ever be called from one unique client thread. Client code must still use GASNet No-Interrupt Sections
and Handler-Safe Locks to ensure correct operation.

(N
Implementor’s Note:

e We may be able to make GASNet implementations independent of the threading system by having the client
provide a few callback functions (e.g. mutex create/lock/unlock, thread create, threadid query and thread-
local- data set/get)

e change the name of gasnet_init based on which mode is selected to ensure correct version is linked

e An implementation of GASNET_PAR is sufficient to handle all the configurations - the other configurations just
permit certain useful optimizations (such as removing unnecessary locking in the library)

e Interrupt-driven implementations of GASNET_SEQ and GASNET_PARSYNC using signals must be prepared to
handle the case where the thread responding to the signal may not be the thread currently inside a GASNet
call. They may also need to use a private lock during HSL release to prevent multiple threads from polling
simultaneously

N J

Chapter 1: Introduction 3

1.6 Errors

Many GASNet core functions return 0 on success (GASNET_0K), or else they return errors from the following
list, as specified by each function:

GASNET_OK = 0 (no error)
GASNET_ERR_RESOURCE
GASNET_ERR_BAD_ARG
GASNET_ERR_NOT_INIT
GASNET_ERR_BARRIER_MISMATCH
GASNET_ERR_NOT_READY

Except where otherwise noted, errors that occur during a call to the extended API are fatal.

Many of the core API functions will return GASNET_ERR_RESOURCE to indicate a generic failure in the hardware
or communications system, GASNET_ERR_BAD_ARG to indicate an illegal client argument, or GASNET_ERR_NOT_INIT
to indicate that gasnet_attach() has not been called.

If any node of a GASNet job crashes, aborts, or suffers a fatal hardware error, GASNet should make every
attempt to ensure that the remaining nodes of the job are terminated in a timely manner to prevent creation of
orphaned processes.

1.6.0.1 gasnet_ErrorName, gasnet_ErrorDesc

char * gasnet_ErrorName (int errval)

char * gasnet_ErrorDesc (int errval)
gasnet_ErrorName() and gasnet_ErrorDesc() convert the GASNet error number errval into a string
containing the name or description (respectively) of the given error number. The client must not modify
the string returned.

1.7 GASNet Types

gasnet_node_t
unsigned integer type representing a unique 0-based node index

gasnet_handle_t
an opaque type representing a non-blocking operation in-progress initiated using the extended API

gasnet_handler_t
an unsigned integer type representing an index into the core API AM handler table

gasnet_handlerarg_t
a 32-bit signed integer type which is used to express the user-provided arguments to all AM handlers.
Platforms lacking a native 32-bit type may define this to a 64-bit type, but only the lower 32-bits are
transmitted during an AM message send (and sign-extended on the receiver).

gasnet_token_t
an opaque type passed to core API handlers which may be used to query message information

gasnet_register_value_t
the largest unsigned integer type that can fit entirely in a single CPU register for the current archi-
tecture and ABI. SIZEOF_GASNET_REGISTER_VALUE_T is a preprocess-time literal integer constant (i.e.
not sizeof ())indicating the size of this type in bytes

gasnet_handlerentry_t
struct type used to negotiate handler registration in gasnet_attach()

Chapter 1: Introduction 4

1.8 Compile-time constants

GASNET_VERSION
an integer representing the major version of the GASNet spec to which this implementation complies.
Implementations of this version of the specification should set this value to the integer 1

GASNET_CONFIG_STRING
a string representing any the relevant GASNet compile-time configuration settings that can be com-
pared using string compare to verify version compatibility. The string is also embedded into the

library itself such that it can be scanned for within a binary executable which is statically linked with
GASNet.

GASNET_MAXNQODES
an integer representing the maximum number of nodes supported in a single GASNet job

GASNET_ALIGNED_SEGMENTS
defined by the GASNet implementation to the value 1 if gasnet_attach() guarantees that the remote-
access memory segment will be aligned at the same virtual address on all nodes. Defined to 0 otherwise.

GASNET_PAGESIZE
a preprocessor constant integer which provides the memory granularity size used for various GASNet
parameters which are required to be page-aligned. On many systems this will be the system page size.

1.9 General notes

e All GASNet functions (in the extended and core API) support loopback (i.e. a node sending a get or active
message to itself), and all functions will still work in the case of single-node jobs (e.g. barriers are basically
no-ops in that case)

e GASNet will ensure that stdout/stderr are correctly propagated in a system-specific way (e.g. to the spawning
console or possibly to a file or set of files). No guarantees are made about propagation of stdin, although some
implementations may choose to deal with this.

e GASNet makes no guarantees about the propagation of external signals across a job - however, see comments
in gasnet_exit

Chapter 2: Core API 5

2 Core API

The core API consists of:
e A job control interface for bootstrapping, job termination and job environment queries
e The active messaging interface for implementing requests, replies and handlers

e An interface which provides handler signal-safety and atomicity control (No-Interrupt Sections and Handler-
Safe Locks)

2.1 Job Control Interface

Job startup in GASNet is a two-step process. GASNet programs should start by calling gasnet_init() as the
first statement in their main() function, which bootstraps the nodes and establishes command-line arguments and
the job environment. All nodes then call the gasnet_attach() function to initialize the network and register shared
memory segments.

GASNet initialization may register some UNIX signal handlers (e.g. to support interrupt-based implementations
or aggressive segment registration policies). Client code which registers signal handlers must be careful not to
preempt any GASNet-registered signal handlers (even for seemingly fatal signals such as SIGABRT) - the only signal
which the client may always safely catch is SIGQUIT.

Any GASNet library implementation can be built in one of the following three configurations, which affects
the behavior of remote-access memory segment registration during gasnet_attach(). The gasnet.h header file will
define the appropriate preprocessor symbol to indicate which configuration is active.

GASNET_SEGMENT_FAST
The remote-access memory segment is limited to an implementation-defined "reasonable" size, and
optimized in an implementation-specific way to provide the fastest possible remote accesses. The
maximum segment size may be queried using gasnet_getMaxLocalSegmentSize ().

GASNET_SEGMENT_LARGE
This configuration allows clients with larger shared data requirements to register a larger remote-
access memory segment, possibly at some cost in the efficiency of remote accesses. The maximum
segment size may be queried using gasnet_getMaxLocalSegmentSize (), and should be comparable
to the maximum total data size allowed for processes on the given system.

GASNET_SEGMENT_EVERYTHING
The entire virtual memory space of each process is made available for remote access, in a way such
that any memory access that would succeed when executed locally by this node would also succeed if
executed by other nodes remotely. This can be used by clients which need to make the entire memory
heap and static data areas available for remote access.

a N
Implementor’s Note:

e The maximum segment size for GASNET_SEGMENT_FAST on many implementations is likely to to be limited
by factors such as the amount of pinnable physical memory currently available in the system, and the access
range of the NIC hardware.

e GASNET_SEGMENT_EVERYTHING support can trivially be provided by implementing all the remote-access op-
erations and long AM messages using core APl medium messages, such that all data accesses are actually
executed by the local host processor. However, implementors are encouraged to investigate higher-performance
alternatives whenever possible.

e On systems requiring pinned segments, GASNET_SEGMENT_LARGE can be implemented using dynamic pinning
schemes (possibly with caching to amortize rendezvous and pinning costs) or combinations of direct remote
accesses and AM-based accesses.

N J

Chapter 2: Core API 6

2.1.0.1 gasnet_init

int gasnet_init (int *argc, char ***argv)
Bootstraps a GASNet job and performs any system-specific setup required.

Called by all GASNet-based applications upon startup to bootstrap the nodes, before any other processing
takes place. Must be called before any calls to any other functions in this specification, and before any
investigation of the command-line parameters passed to the program in argc/argv, which may be modified
or augmented by this call. The semantics of any code executing before the call to gasnet_init() is
implementation-specific (for example, it is undefined whether stdin/stdout/stderr are functional, or even
how many nodes will run that code).

Upon return from gasnet_init (), all the nodes of the job will be running, stdout/stderr will be functional,
and the basic job environment will be established, however the primary network resources may not yet have
been initialized. The following GASNet functions are the only ones that may be called between gasnet_
init () and gasnet_attach():

gasnet_mynode ()

gasnet_nodes ()
gasnet_getMaxLocalSegmentSize ()
gasnet_getMaxGlobalSegmentSize ()
gasnet_getenv ()

gasnet_exit ()

All other GASNet calls are prohibited until after a successful gasnet_attach().

gasnet_init () may fail with a fatal error and implementation-defined message if the nodes of the job cannot
be successfully bootstrapped. It also may return an error code such as GASNET_ERR_RESOURCE to indicate
there was a problem acquiring network or system resources. Otherwise, it returns GASNET_OK to indicate
success. May only be called once during a process lifetime, subsequent calls will return an error.

2.1.0.2 gasnet_attach

typedef struct {
gasnet_handler_t index; // == 0 for don’t care
void (xfnptr) O);

} gasnet_handlerentry_t;

int gasnet_attach (gasnet_handlerentry_t *table, int numentries,
uintptr_t segsize, uintptr_t minheapoffset)
Initializes the GASNet network system and performs any system-specific setup required.

table is an array of numentries gasnet_handlerentry_t elements used for registering active-message handlers
provided by the client code. Clients that never explicitly call the active-message request functions in the
core API need not register any handlers, and may pass a NULL pointer for table. Clients wishing to register
some handlers should fill in table with function pointers and the desired handler index (or index 0 for "don’t-
care") - note that handlers 0..127 are reserved for GASNet internal use, and handlers 128..255 are available
for client-provided handlers. Once gasnet_attach() returns, any "don’t care" handler indexes in the table
will be modified in place to reflect the handler index assigned for each handler - the assignment algorithm is
deterministic: passing the same handler table on each node will guarantee an identical resulting assignment
on each node. Handler function prototypes should match the prototypes described in the Active Message
Interface section.

segsize and minheapoffset are used to communicate the desired size and location of the remote-access memory
data segment for the local node that will be used for all remote accesses (i.e. using the data transfer functions
of the extended API) or as the target of any Long active-messages in the core API. The client passes the
desired size of this area in bytes as segsize, which must be a multiple of GASNET_PAGESIZE, and should be
less than or equal to the value returned by gasnet_getMaxLocalSegmentSize (). minheapoffset specifies
the minimum amount of virtual memory space (in bytes) to leave between the end of the current memory
heap and the beginning of the remote-access memory segment (on some systems the size of this offset may

Chapter 2: Core API 7

limit the total future growth of the local memory heap, on other systems it may be irrelevant). All nodes
are required to pass the same value for minheapoffset. Note that specifying a large minheapoffset may
limit the possible size of the remote-access segment on some systems. Passing a segsize of zero disables the
remote-access segment for this node, meaning other nodes cannot access it with remote-memory operations
and this node cannot be the target of any Long AM messages.

GASNet will attempt to place the data segment in an area of the virtual memory space whose pages are
currently unused (e.g. by calling mmap). The actual remote-access segment size achieved may be less than
segsize if insufficient system resources are available - the exact size and location of the segment for all nodes
should be queried after attach using gasnet_getSegmentInfo(). The segment assignment is guaranteed to
have a GASNET_PAGESIZE-aligned base address and size, but may differ in size across nodes, according to the
requested segment sizes and system resource availability. GASNet will not initialize data within the memory
segment in any way, nor will it attempt to access the memory locations within the segment until directed
to do so by a data transfer function or Long active message.

If the GASNet implementation defines the macro GASNET_ALIGNED_SEGMENTS to 1, then gasnet_attach()
guarantees that the base of the remote-access memory segment will be aligned at the same virtual address
across all nodes (and will fail if it cannot provide this). Otherwise, this guarantee is not provided. Note the
segment sizes may still differ across nodes, based on segsize and system resource availability.

In the GASNET_SEGMENT_FAST and GASNET_SEGMENT_LARGE configurations, GASNet guarantees that data
transfer functions, Long active messages and local accesses referencing memory locations in the remote-
access memory segment will succeed, even before any local activity takes place on those pages (i.e. in an
implementation performing lazy registration, first touch = allocate).

segsize and minheapoffset are ignored in the GASNET_SEGMENT_EVERYTHING configuration, as the entire
virtual memory space is implicitly shared for remote access. Under this configuration, it is the client’s
responsibility to ensure that any remote-memory references fall within the legal areas of the current heap
and data segment for the target node - remote accesses or Long active messages to locations outside these
areas will have undefined effects (for example, they may cause a segmentation fault on the target node).

gasnet_attach() may fail with a fatal error and implementation-defined message if the network cannot be
successfully initialized. It also may return an error code such as GASNET_ERR_RESOURCE to indicate there
was a problem acquiring nework or system resources. Otherwise, it returns GASNET_OK to indicate success.

A successful call acts as a global barrier and blocks until all other nodes which are part of this parallel job
have successfully called gasnet_attach(). May only be called once during a process lifetime, subsequent
calls will return an error.

~

e In the GASNET_SEGMENT_FAST and GASNET_SEGMENT_LARGE configurations, GASNet must take steps to en-

~
Implementor’s Note:

sure the pages in the segment have been properly registered for remote access in a system-specific and
implementation-specific way (e.g. mmapping them so they get added to the process page table, pinning
the pages, registering the physical address with the NIC, etc.). Implementations are encouraged to defer
consuming physical memory or swap space resources for pages in the segment until the first actual reference
to them.

Every implementation that pins pages needs a strategy for handling remote accesses under the GASNET_
SEGMENT_LARGE and GASNET_SEGMENT_EVERYTHING configurations when the segment size exceeds the amount
of pinnable pages - e.g. some implementations may dynamically pin pages, others may pin only a portion of
the segment and use an extra copy to handle access to data outside the pinned region.

Some GASNet implementations may need to allocate and pin additional memory for their own internal use
in messaging (e.g. send buffers), but such memory should not fall within the client’s data segment under
GASNET_SEGMENT_FAST and GASNET_SEGMENT_LARGE (although it may be adjacent to it).

Some GASNet implementations may also choose to pin other pages to optimize access and remove extra copies
- for example, pinning the program stack may be advisable on some systems since a large number of the data
transfer functions in the extended API are likely to use stack locations as the local source/destination.

/)

Chapter 2: Core API 8

2.1.0.3 gasnet_getMaxLocalSegmentSize

uintptr_t gasnet_getMaxLocalSegmentSize ()
Retrieve an approximate, optimistic maximum size in bytes for the remote-access memory segment that may
be provided to gasnet_attach() under the current configuration.

The return value of this function may depend on current system resource usage, and may return different
values on different nodes of a job, according to current system utilization. The value returned will always
be a multiple of GASNET_PAGESIZE.

The value returned is an optimistic approximation of the segment size which can be acquired by gasnet_
attach() - the actual size achieved can be queried after attach using gasnet_getSegmentInfo().

On many implementations, this function will return different values in the GASNET_SEGMENT_FAST and
GASNET_SEGMENT_LARGE configurations. Under the GASNET_SEGMENT_EVERYTHING configuration, this func-
tion returns -1.

This function has undefined behavior after gasnet_attach().
2.1.0.4 gasnet_getMaxGlobalSegmentSize

uintptr_t gasnet_getMaxGlobalSegmentSize ()
Returns a global minimum value that would be returned by a call to gasnet_getMaxLocalSegmentSize on
any node of the current job (i.e. the smallest max segment size estimated for any node in the job).

This function has undefined behavior after gasnet_attach().
2.1.0.5 gasnet_exit

void gasnet_exit (int exitcode)

Terminate the current GASNet job and return the given exitcode to the console which invoked the job (in
a system-specific way). This call is not a collective operation, meaning any node may call it at any time
after initialization. It causes the system to flush all I/O, release all resources and terminate the job for all
active nodes. If several nodes and/or threads call it simultaneously with different exit codes within a given
synchronization phase, the result provided to the console will be one of the provided exit codes (chosen
arbitrarily). This function should be called at the end of main() after a barrier to ensure proper system
exit, and should also be called in the event of any fatal errors. GASNet clients are encouraged to call
gasnet_exit () before explicitly exiting (by calling exit (), abort()) to reduce the possibility and lifetime
of orphaned nodes, but this is not required.

GASNet will send a SIGQUIT signal to the node if it detects that a remote node has called gasnet_exit or
crashed (in which case the node should catch the signal, perform any system-specific shutdown, then call
gasnet_exit () to end the local node process). GASNet will also send a SIGQUIT signal if it detects that
the job has received a different catchable terminate-the-program signal (e.g. SIGTERM, SIGINT) since some
of these other signals may be meaningful (and non-fatal) to certain GASNet implementations.

2.2 Job Environment Queries

2.2.0.1 gasnet_mynode

gasnet_node_t gasnet_mynode ()
returns the unique, 0-based node index representing this node in the current GASNet job

2.2.0.2 gasnet_nodes

gasnet_node_t gasnet_nodes ()
returns the number of nodes in the current GASNet job

Chapter 2: Core API 9
2.2.0.3 gasnet_getSegmentInfo

typedef struct {
void *addr;
uintptr_t size;

} gasnet_seginfo_t;

int gasnet_getSegmentInfo (gasnet_seginfo_t *seginfo_table, int numentries)
Query the segment base addresses and sizes for all the nodes in the job. seginfo_table is an array of gasnet_
seginfo_t (and numentries is the number of entries in the table). GASNet fills in the table with the
remote-access segment base address and size in bytes for each node whose index is less than numentries.
The value of numentries is usually equal to gasnet_nodes(), but is permitted to be greater (in which case
higher array entries are left untouched) or less (in which case the higher-numbered nodes are not reported).
This is a non-collective operation. Returns GASNET_OK on success.

Note that when GASNET_ALIGNED_SEGMENTS=1, the base addresses are guaranteed to be equal (i.e.
all remote-access segments start at the same virtual addresses). However, in any case the segment sizes may
differ across nodes, and specifically they may differ from the size requested by the client in the gasnet_
attach() size hint.

2.2.0.4 gasnet_getenv

char * gasnet_getenv (const char *name)
Has the same semantics as the POSIX getenv () call, except it queries the system-specific environment which
was used to spawn the job (e.g. the environment of the spawning console). Calling POSIX getenv () directly
on some implementations may not correctly return values reflecting the environment that initiated the job
spawn, consequently GASNet clients wishing to query a consistent snapshot of the spawning environment
across nodes should never call getenv() directly. The semantics of POSIX setenv() are undefined in
GASNet jobs (specifically, it will probably fail to propagate changes across nodes).

2.3 Active Messaging Interface

Active message communication is formulated as logically matching request and reply operations. Upon receipt
of a request message, a request handler is invoked; likewise, when a reply message is received, the reply handler is
invoked. Request handlers can reply at most once to the requesting node. If no explicit reply is made, the layer
may generate one (to an implicit do-nothing reply handler). Thus a request handler can call reply at most once,
and may only reply to the requesting node. Reply handlers cannot request or reply.

Here is a high-level description of a typical active message exchange between two nodes, A and B:

1. A calls gasnet_AMRequest*() to send a request to B. The call includes arguments, data payload, the node
index of B and the index of the request handler to run on B when the request arrives

2. At some later time, B receives the request, and runs the appropriate request handler with the arguments
and data (if any) provided in the gasnet_AMRequest*() call. The request handler does some work on the
arguments, and usually finishes by calling gasnet_AMReply* () to issue a reply message before it exits (replying
is optional in GASNet, but required in AM2 - if the request handler does not reply then no further actions are
taken). gasnet_AMReply* () takes the token passed to the request handler, arguments and data payload, and
the index of the reply handler to run when the reply message arrives. It does not take a node index because
a request handler is only permitted to send a reply to the requesting node

3. At some later time, A receives the reply message from B and runs the appropriate reply handler, with the
arguments and data (if any) provided in the gasnet_AMReply* () call. The reply handler does some work on
the arguments and then exits. It is not permitted to send further messages.

The message layer will deliver requests and replies to destination nodes barring any catastrophic errors (e.g.
node crashes). From a sender’s point of view, the request and reply functions block until the message is sent. A
message is defined to be sent once it is safe for the caller to reuse the storage (registers or memory) containing
the message (one notable exception to this policy is gasnet_RequestLargeAsyncM()). In implementations which

Chapter 2: Core API 10

copy or buffer messages for transmission, the definition still holds: message sent means the layer has copied the
message and promises to deliver the copy with its "best effort", and the original message storage may be reused.
By best effort, the message layer promises it will take care of all the details necessary to transmit the message.
These details include any retransmission attempts and buffering issues on unreliable networks.

However, in either case, sent does not imply received. Once control returns from a request or reply function,
clients cannot assume that the message has been received and handled at the destination. The message layer only
guarantees that if a request or reply is sent, and, if the receiver occasionally polls for arriving messages, then
the message will eventually be received and handled. From a receiver’s point of view, a message is defined to be
received only once its handler function is invoked. The contents of partially received messages and messages whose
handlers have not executed are undefined.

If the client sends an AM request or AM reply to a handler index which has not been registered on the destination
node, GASNet will print an implementation-defined error message and terminate the job. It is implementation-
defined whether this checking happens on the sending or receiving node.

2.3.1 Active Message Categories

There are three categories of active messages:

‘Short Active Message’
These messages carry only a few integer arguments (up to gasnet_AMMaxShort())
handler prototype:

void handler(gasnet_token_t token,
gasnet_handlerarg_t arg0O, ... gasnet_handlerarg t argM-1);

‘Medium Active Message’
In addition to integer arguments, these messages can can carry an opaque data payload (up to gasnet_
AMMaxMedium() bytes in length), that will be made available to the handler when it is run on the remote
node.
handler prototype:

void handler(gasnet_token_t token,
void *buf, size_t nbytes,
gasnet_handlerarg_t arg0O, ... gasnet_handlerarg t argM-1);

‘Long Active Message’
In addition to integer arguments, these messages can carry an opaque data payload (up to gasnet_
AMMaxLong () bytes in length) which is destined for a particular predetermined address in the segment
of the remote node (often implemented using RDMA hardware assistance)
handler prototype:

void handler(gasnet_token_t token,
void *buf, size_t nbytes,
gasnet_handlerarg_t arg0O, ... gasnet_handlerarg t argM-1);

For more discussion on these three categories, see the Appendix.

The number of handler arguments (M) is specified upon issuing a request or reply by choosing the request/reply
function of the appropriate name. The category of message and value of M used in the request/reply message
sends determines the appropriate handler prototype, as detailed above. If a request or reply is sent to a handler
whose prototype does not match the requirements as detailed above, the result is undefined.

Implementor’s Note:

e Some implementations may choose to optimize medium and long messages for payloads whose base address
and length are aligned with certain convenient sizes (word-aligned, doubleword-aligned, page-aligned etc.)
but this does not affect correctness.

Chapter 2: Core API 11

2.3.2 Active Message Size Limits

These functions are used to query the maximum size messages of each category supported by a given imple-
mentation. These are likely to be implemented as macros for efficiency of client code which uses them (within
packing loops, etc.)

2.3.2.1 gasnet_AMMaxArgs

size_t gasnet_AMMaxArgs ()
Returns the maximum number of handler arguments (i.e. M) that may be passed with any AM request or
reply function. This value is guaranteed to be at least (2 * MAX(sizeof (int),sizeof (void*))) (i.e. 8 for
32-bit systems, 16 for 64-bit systems), which ensures that 8 ints and/or pointers can be sent with any active
message. All implementations must support all values of M from 0...gasnet_AMMaxArgs ().

2.3.2.2 gasnet_AMMaxMedium

size_t gasnet_AMMaxMedium ()
Returns the maximum number of bytes that can be sent in the payload of a single medium AM request or
reply. This value is guaranteed to be at least 512 bytes on any implementation.

2.3.2.3 gasnet_AMMaxLongRequest

size_t gasnet_AMMaxLongRequest ()
Returns the maximum number of bytes that can be sent in the payload of a single long AM request. This
value is guaranteed to be at least 512 bytes on any implementation. Implementations which use RDMA to
implement long messages are likely to support a much larger value.

2.3.2.4 gasnet_AMMaxLongReply

size_t gasnet_AMMaxLongReply ()
Returns the maximum number of bytes that can be sent in the payload of a single long AM reply. This
value is guaranteed to be at least 512 bytes on any implementation. Implementations which use RDMA to
implement long messages are likely to support a much larger value.

2.3.3 Active Message Request Functions

In the function descriptions below, M is to be replaced with a number in [0 ... gasnet_AMMaxArgs()]
2.3.3.1 gasnet_AMRequestShortM

int gasnet_AMRequestShortM (gasnet_node_t dest, gasnet_handler_t handler,
gasnet_handlerarg_t arg0, ..., gasnet_handlerarg_t argM-1);
Send a short AM request to node dest, to run the handler registered on the destination node at handler
table index handler, with the given M arguments. gasnet_AMRequestShortM returns control to the calling
thread of computation after sending the request message. Upon receipt, the receiver invokes the appropriate
active message request handler function with the M integer arguments. Returns GASNET_OK on success.

2.3.3.2 gasnet_AMRequestMediumM

int gasnet_AMRequestMediumM (gasnet_node_t dest, gasnet_handler_t handler,
void *source_addr, size_t nbytes, gasnet_handlerarg_t arg0, ...,
gasnet_handlerarg_t argM-1)
Send a medium AM request to node dest, to run the handler registered on the destination node at handler
table index handler, with the given M arguments.

Chapter 2: Core API 12

The message also carries a data payload copied from the local node’s memory space as indicated by
source_addr and nbytes (which need not fall within the registered data segment on the local node). The
value of nbytes must be no larger than the value returned by gasnet_AMMaxMedium(), and is permitted to
be zero (in which case source_addr is ignored and the buf value passed to the handler is undefined).

gasnet_AMRequestMediumM returns control to the calling thread of computation after sending the associated
request, and the source memory may be freely modified once the function returns. The active message is
logically delivered after the data transfer finishes.

Upon receipt, the receiver invokes the appropriate request handler function with a pointer to temporary
storage containing the data payload, the number of data bytes transferred, and the M integer arguments.
The dynamic scope of the storage is the same as the dynamic scope of the handler. The data should be
copied if it is needed beyond this scope. Returns GASNET_OK on success.

2.3.3.3 gasnet_AMRequestLongM

int gasnet_AMRequestLongM (gasnet_node_t dest, gasnet_handler_t handler,
void *source_addr, size_t nbytes, void *dest_addr, gasnet_handlerarg_t arg0, ...,
gasnet_handlerarg_t argM-1);
Send a long AM request to node dest, to run the handler registered on the destination node at handler table
index handler, with the given M arguments.

The message also carries a data payload copied from the local node’s memory space as indicated by
source_addr and nbytes (which need not fall within the registered data segment on the local node). The
value of nbytes must be no larger than the value returned by gasnet_AMMaxLongRequest (), and is permit-
ted to be zero (in which case source_addr is ignored and the buf value passed to the handler is undefined).
The memory specified by [dest_addr...(dest_addr+nbytes-1)] must fall entirely within the memory segment
registered for remote access by the destination node. This area will receive the data transfer before the
handler runs.

If dest is the current node (i.e. loopback) and the source and destination memory overlap, the result is
undefined. gasnet_AMRequestLongM returns control to the calling thread of computation after sending
the associated request, and the source memory may be freely modified once the function returns. The
active message is logically delivered after the bulk transfer finishes. Upon receipt, the receiver invokes the
appropriate request handler function with a pointer into the memory segment where the data was placed,
the number of data bytes transferred, and the M integer arguments. Returns GASNET_OK on success.

2.3.3.4 gasnet_AMRequestLongAsyncM

int gasnet_AMRequestLongAsyncM (gasnet_node_t dest, gasnet_handler_t handler,
void *source_addr, size_t nbytes, void *dest_addr, gasnet_handlerarg_t arg0, ...,
gasnet_handlerarg_t argM-1);
gasnet_AMRequestLongAsyncM() has identical semantics to gasnet_AMRequestLongM(), except that the
handler is required to send an AM reply and the data payload source memory must NOT be modified
until this matching reply handler has begun execution. Some implementations may leverage this additional
constraint to provide higher performance (e.g. by reducing extra data copying).

Implementor’s Note:

e Note that unlike the AM2.0 function of similar name, this function is permitted to block temporarily if the
network is unable to immediately accept the new request.

2.3.4 Active Message Reply Functions

The following active message reply functions may only be called from the context of a running active message
request handler, and a reply function may be called at most once from any given request handler (it is an error to
do otherwise).

Chapter 2: Core API 13
2.3.4.1 gasnet_AMReplyShortM

int gasnet_AMReplyShortM (gasnet_token_t token, gasnet_handler_t handler,
gasnet_handlerarg_t arg0, ..., gasnet_handlerarg_t argM-1);
Send a short AM reply to the indicated handler on the requesting node (i.e. the node responsible for this
particular invocation of the request handler), and include the given M arguments. gasnet_AMReplyShortM
returns control to the calling thread of computation after sending the reply message.

Upon receipt, the receiver invokes the appropriate active message reply handler function with the M integer
arguments. Returns GASNET_OK on success.

2.3.4.2 gasnet_AMReplyMediumM

int gasnet_AMReplyMediumM (gasnet_token_t token, gasnet_handler_t handler,

void *source_addr, size_t nbytes, gasnet_handlerarg_t arg0, ...,

gasnet_handlerarg_t argM-1);
Send a medium AM reply to the indicated handler on the requesting node (i.e. the node responsible for this
particular invocation of the request handler), with the given M arguments and given data payload copied
from the local node’s memory space (source_addr need not fall within the registered data segment on the
local node). The value of nbytes must be no larger than the value returned by gasnet_AMMaxMedium(),
and is permitted to be zero (in which case source_addr is ignored and the buf value passed to the handler
is undefined). gasnet_AMReplyMediumM returns control to the calling thread of computation after sending
the associated reply, and the source memory may be freely modified once the function returns. The active
message is logically delivered after the data transfer finishes.

Upon receipt, the receiver invokes the appropriate reply handler function with a pointer to temporary
storage containing the data payload, the number of data bytes transferred, and the M integer arguments.
The dynamic scope of the storage is the same as the dynamic scope of the handler. The data should be
copied if it is needed beyond this scope. Returns GASNET_OK on success.

2.3.4.3 gasnet_AMReplyLongM

int gasnet_AMReplyLongM (gasnet_token_t token, gasnet_handler_t handler,
void *source_addr, size_t nbytes, void *dest_addr, gasnet_handlerarg_t arg0, ...,
gasnet_handlerarg_t argM-1);
Send a long AM reply to the indicated handler on the requesting node (i.e. the node responsible for this
particular invocation of the request handler), with the given M arguments and given data payload copied
from the local node’s memory space (source_addr need not fall within the registered data segment on the
local node). The value of nbytes must be no larger than the value returned by gasnet_AMMaxLongReply (),
and is permitted to be zero (in which case source_addr is ignored and the buf value passed to the handler is
undefined). The memory specified by [dest_addr...(dest_addr+nbytes-1)] must fall entirely within the memory
segment registered for remote access by the destination node. If dest is the current node (i.e. loopback) and
the source and destination memory overlap, the result is undefined. gasnet_AMReplyLongM returns control
to the calling thread of computation after sending the associated reply, and the source memory may be freely
modified once the function returns. The active message is logically delivered after the bulk transfer finishes.

Upon receipt, the receiver invokes the appropriate reply handler function with a pointer into the memory
segment where the data was placed, the number of data bytes transferred, and the M integer arguments.
Returns GASNET_OK on success.

2.3.5 Misc. Active Message Functions

2.3.5.1 gasnet_AMPoll

Chapter 2: Core API 14
int gasnet_AMPoll ()

An explicit call to service the network, process pending messages and run handlers as appropriate. Most of
the message-sending primitives in GASNet poll the network implicitly. Purely polling-based implementations
of GASNet may require occasional calls to this function to ensure progress of remote nodes during compute-
only loops. Any client code which spin-waits for the arrival of a message should call this function within
the spin loop to optimize response time. This call may be a no-op on some implementations (e.g. purely
interrupt-based implementations). Returns GASNET_OK unless an error condition was detected.

2.3.5.2 GASNET_BLOCKUNTIL

#define GASNET_BLOCKUNTIL(cond) 777

This is a macro which implements a busy-wait/blocking polling loop in the way most efficient for the current
GASNet core implementation. The macro blocks execution of the current thread and services the network until
the provided condition becomes true. cond is an arbitrary C expression which will be evaluated by the macro one
or more times as active messages arrive until the condition evaluates to a non-zero value. cond is an expression
whose value is altered by the execution of an AM handler which the client thread is waiting for - GASNet may
safely assume that the value of cond will only change while an AM handler is executing.

Example usage:

int doneflag = O;
gasnet_AMRequestShort1 (..., &doneflag); // reply handler sets doneflag to 1
GASNET_BLOCKUNTIL(doneflag == 1);

Note that code like this would be illegal and could cause node 0 to sleep forever:

static int doneflag = 0;
node O: node 1:
GASNET_BLOCKUNTIL(doneflag == 1); gasnet_put_val(0, &doneflag, 1, sizeof(int));

because gasnet_put_val (and other extended API functions) might not be implemented using AM handlers.
Also note that cond may be evaluated concurrently with handler execution, so the client is responsible for nego-
tiating any atomicity concerns between the cond expression and handlers (for example, protecting both with a
handler-safe lock if the cond expression reads two or more values which are all updated by handlers). Finally, note
that unsynchronized handler code which modifies one or more locations and then performs a flag write to signal
a different thread may need to execute a local memory barrier before the flag write to ensure correct ordering on
non-sequentially-consistent SMP hardware.

()
Implementor’s Note:

e omne trivial implementation: #define GASNET_BLOCKUNTIL(cond) while (!(cond)) gasnet_AMPoll()

e smarter implementations may choose to spin for awhile and then block

e Any implementation that includes blocking must ensure progress if all client threads call GAS-
NET_BLOCKUNTIL(), and must ensure the blocked thread is awakened even if the handler is run
synchronously during a gasnet_AMPol1l() call from a different client thread. Other client threads performing

sends or polls must not be prevented from making progress by the blocking thread (possibly a motivation
against the "trivial implementation" above).

2.3.5.3 gasnet_AMGetMsgSource

int gasnet_AMGetMsgSource (gasnet_token_t token, gasnet_node_t *srcindex)
Can be called by handlers to query the source of the message being handled. The token argument must be
the token passed into the handler on entry. Returns GASNET_OK on success.

2.4 Atomicity Control

Chapter 2: Core API 15
2.4.1 Atomicity semantics of handlers

Handlers may run asynchronously with respect to the main computation (in an implementation which uses
interrupts to run some or all handlers), and they may run concurrently with each other on separate threads (e.g.
in a CLUMP implementation where several threads may be polling the network at once). An implementation
using interrupts may result in handler code running within a signal handler context. Some implementations may
even choose to run handlers on a separate private thread created by GASNet (making handlers asynchronous with
respect to all client threads). Note that polling-based GASNet implementations are likely to poll (and possibly
run handlers) from within any GASNet call (i.e. not just gasnet_AMPoll()). Because of all this, handler code
should run quickly and to completion without making blocking calls, and should not make assumptions about the
context in which it is being run (special care must be taken to ensure safety in a signal handler context, see below).

Regardless, handlers themselves are not interruptible - any given thread will only be running a single AM
handler at a time and will never be interrupted to run another AM handler (there is one exception to this rule -
the gasnet_AMReply* () call in a request handler may cause reply handlers to run synchronously, which may be
necessary to avoid deadlock in some implementations. This should not be a problem since gasnet_AMReply* ()
is often the last action taken by a request handler). Handlers are specifically prohibited from initiating random
network communication to prevent deadlock - request handlers must generate at most one reply (to the requestor)
and make no other communication calls (including polling), and reply handlers may not communicate or poll at
all.

The asynchronous nature of handlers requires two mechanisms to make them safe: a mechanism to ensure
signal safety for GASNet implementations using interrupt-based mechanisms, and a locking mechanism to allow
atomic updates from handlers to data structures shared with the client threads and other handlers.

(see http://www.cs.berkeley.edu/ bonachea/upc/ for a more detailed discussion on handler atomicity)

2.4.2 No-Interrupt Sections - Ensuring signal-safety for handlers

Traditionally, code running in signal handler context is extremely circumscribed in what it can do: e.g. none
of the standard pthreads/System V synchronization calls are on the list of signal-safe functions (for such a list see
POSIX System Interfaces 2.4, IEEE Std 1003.1-2001). Note that even most "thread-safe" libraries will break or
deadlock if called from a signal handler by the same thread currently executing a different call to that library in
an earlier stack frame. One specific case where this is likely to arise in practice is calls to malloc() /free(). To
overcome these limitations, and allow our handlers to be more useful, the normal limitations on signal handlers
will be avoided by allowing the client thread to temporarily disable the network interrupts that run handlers. All
function calls that are not signal-safe and could possibly access state shared by functions also called from handlers
MUST be called within a GASNet "No-Interrupt Section":

2.4.2.1 gasnet_hold_interrupts, gasnet_resume_interrupts

void gasnet_hold_interrupts ()

void gasnet_resume_interrupts ()
gasnet_hold_interrupts() and gasnet_resume_interrupts() are used to define a GASNet No-Interrupt
Section (any code which dynamically executes between the hold and resume calls is said to be "inside"
the No-Interrupt Section). These are likely to be implemented as macros and highly tuned for efficiency.
The hold and resume calls must be paired, and may not be nested recursively or the results are undefined
(this means that clients should be especially careful when calling other functions in the client from within
a No-Interrupt Section). Both calls will return immediately in the common case, although one or both
may cause messages to be serviced on some implementations. GASNet guarantees that no handlers will
run asynchronously on the current thread within the No-Interrupt Section. The no-interrupt state is a
per-thread setting, and GASNet may continue running handlers synchronously or asynchronously on other
client threads or GASNet-private threads (even in a GASNET_SEQ configuration) - specifically, a No-Interrupt
Section does not guarantee atomicity with respect to handler code, it merely provides a way to ensure that
handlers won’t run on a given thread while it’s inside a call to a non-signal-safe library.

http://www.cs.berkeley.edu/~bonachea/upc/

Chapter 2: Core API 16
2.4.3 Restrictions on No-Interrupt Sections

There is a strict set of conventions governing the use of No-Interrupt Sections which must be followed in order
to ensure correct operation on all GASNet implementations. Clients which violate any of these rules may be
subject to intermittent crashes, fatal errors or network deadlocks.

e gasnet_hold_interrupts() and gasnet_resume_interrupts() should not be called from within a handler
context - handlers are run within an implicit No-Interrupt Section

e Code in a No-Interrupt Section must not call any GASNet functions that may send requests or synchronously
run handlers - specifically, the only GASNet functions which may legally by called within the No-Interrupt
Section are:

gasnet_mynode(), gasnet_nodes(), gasnet_hsl_x(), gasnet_exit(), gasnet_AMReply*()

Note that due to the previous rule, these are also the only GASNet functions that may legally be called within
a handler context (and gasnet_AMReply*() is only legal in a request handler).

e Code in a No-Interrupt Section must never block or spin-wait for an unbounded amount of time, especially
when awaiting a result produced by a handler

e No-Interrupt Sections should only be held "briefly" to avoid starving the network (could cause performance
degradation, but should not affect correctness). Very long No-Interrupt Sections (i.e. on the order of 10 sec or
more) could cause some GASNet implementations employing timeout-based mechanisms to fail (e.g. remote
nodes may decide this node is dead and abort the job).

-
Implementor’s Note:

e One possible implementation: Keep a bit for each thread indicating whether or not a No-Interrupt Section is
in effect, which is checked by all asynchronous signal handlers. If a signal arrives while a No-Interrupt Section
is in effect, a different per-thread bit in memory will be marked indicating a "missed GASNet signal": the
gasnet_resume_interrupts() call will check this bit, and if it is set, the action for the signal will be taken
(the action for a GASNet signal is always to check the queue of incoming network messages, so there’s no
ambiguity on what the signal meant. Since messages are queued, the single ’signal missed’ bit is sufficient
for an arbitrary number of missed signals during a single No-Interrupt Section - GASNet messages will be
removed and processed until the queue is empty).

e Implementation needs to hold a No-Interrupt Section over a thread while running handlers

e Strictly polling-based implementations which never interrupt a thread can implement these as a no-op.
- J

2.4.4 Handler-Safe Locks

In order to support handlers atomically updating data structures accessed by the main-line client code and
other handlers, GASNet provides the Handler-Safe Lock (HSL) mechanism. As the name implies, these are a
special kind of lock which are distinguished as being the only type of lock which may be safely acquired from a
handler context. There is also a set of restrictions on their usage which allows this to be safe (see below). All
lock-protected data structures in the client that need to be accessed by handlers should be protected using a
Handler-Safe Lock (i.e. instead of a standard POSIX mutex).

2.4.4.1 gasnet_hsl_t

gasnet_hsl_t is an opaque type representing a Handler-Safe Lock. HSL’s operate analogously to POSIX
mutexes, in that they are always manipulated using a pointer.

2.4.4.2 gasnet_hsl_init, gasnet_hsl_destroy

gasnet_hsl_t hsl = GASNET_HSL_INITIALIZER;

Chapter 2: Core API 17

void gasnet_hsl_init (gasnet_hsl_t *hsl)
void gasnet_hsl destroy (gasnet_hsl_t *hsl)

Similarly to POSIX mutexes, HSL’s can be created in two ways. They can be statically declared and
initialized using the GASNET_HSL_INITIALIZER constant. Alternately, HSL’s allocated using other means
(such as dynamic allocation) may be initialized by calling gasnet_hsl_init(). gasnet_hsl_destroy()
may be called on either type of HSL once it’s no longer needed to release any system resources associated
with it. It is erroneous to call gasnet_hsl_init() on a given HSL more than once. It is erroneous to
destroy an HSL which is currently locked. Any errors detected in HSL initialization/destruction are fatal.

2.4.4.3 gasnet_hsl_lock, gasnet_hsl _unlock

void gasnet_hsl lock (gasnet_hsl_t *hsl)
void gasnet_hsl_unlock (gasnet_hsl_t *hsl)

Lock and unlock HSL’s. gasnet_hsl_lock() will block until the hsl lock can be acquired by the current
thread. gasnet_hsl_lock() may be called from within main-line client code or from within handlers - this
is the only blocking call which is permitted to execute within a GASNet handler context (e.g. it is erroneous
to call POSIX mutex locking functions). gasnet_hsl_unlock() releases the hsl lock previously acquired
using gasnet_hsl_lock(). It is erroneous to call these functions on HSL’s which have not been properly
initialized. Note that under the GASNET_SEQ configuration, HSL locking functions may only be called from
handlers and the designated GASNet client thread (not from other client threads that may happen to exist
- those threads are not permitted to make any GASNet calls, which includes HSL locking calls).

2.4.5 Restrictions on Handler-Safe Locks

There is a strict set of conventions governing the use of HSL’s which must be followed in order to ensure correct

operation on all GASNet implementations. Amongst other things, the restrictions are designed to ensure that
HSL’s are always held for a strictly bounded amount of time, to ensure that acquiring them from within a handler
can’t lead to deadlock. Clients which violate any of these rules may be subject to intermittent crashes, fatal errors
or network deadlocks.

Code executing on a thread holding an HSL is implicitly within a No-Interrupt Section, and must follow
all the restrictions on code within a No-Interrupt Section (see Section 2.4.3 [Restrictions on No-Interrupt
Sections|, page 16). gasnet_hold_interrupts() and gasnet_resume_interrupts() must not be explicitly

called while holding an HSL
Any handler which locks one or more HSL’s must unlock them all before exiting or calling gasnet_AMReply* ()

HSL’s may not be locked recursively (i.e. calling gasnet_hsl_lock() on a lock already held by the current
thread) and attempting to do so will lead to undefined behavior. It is permitted for a thread to acquire
more than one HSL, although the traditional cautions about the possibility of deadlock in the presence of
multiple locks apply (e.g. the common solution is to define a total order on locks and always acquire them in
a monotonically ascending sequence).

HSL’s must be unlocked in the reverse order they were locked (e.g. lock A; lock B; ... unlock B; unlock A; is
legal - reversing the order of unlocks is erroneous)

HSL’s may not be shared across GASNet processes executing on a machine - for example, it is specifically
disallowed to place an HSL in a system V or mmapped shared memory segment and attempt to access it from
two different GASNet processes.

Chapter 2: Core API 18

-

~
Implementor’s Note:

e HSL’s are likely to just be a thin wrapper around a POSIX mutex - need to add just enough state/code
to ensure the safety properties (must be a real lock, even under GASNET_PARSYNC because client may still
have multiple threads). The only specific action required is that a No-Interrupt Section is enforced while the
main-line code is holding an HSL (must be careful this works properly when multiple HSL’s are held or when
running in a handler).

e Robust implementations may add extra error checking to help discover violations of the restrictions, at least
when compiled in a debugging mode - for example, it should be easy to detect: attempts at recursive locking
on HSL’s, incorrectly ordered unlocks, handlers that fail to release HSL’s, explicit calls to gasnet_hold_
interrupts() and gasnet_resume_interrupts() in a handler or while an HSL is held or in a No-Interrupt
Section, and illegal calls to GASNet messaging functions while holding an HSL or inside a No-Interrupt
Section.

v

Chapter 3: Extended API 19

3 Extended API

Errors in calls to the extended APT are considered fatal and abort the job (by sending a SIGABORT signal) after
printing an appropriate error message.

3.1 Memory-to-memory Data Transfer Functions

These comments apply to all put/get functions:
e The nbytes parameter should be a compile-time constant whenever possible (for efficiency)

e The source memory address for all gets and the target memory address for all puts must fall within the memory
area registered for remote access by the remote node (see gasnet_attach()), or the results are undefined

e Pointers to remote memory are passed as an ordered pair of arguments: an integer node rank (a gasnet_
node_t) and a void * virtual memory address, which logically represent a global pointer to the given address
on the given node. These global pointers need not be remote - the node rank passed to these functions may
in fact be the rank of the current node - implementations must support this form of loopback, and should
probably attempt to optimize it by avoiding network traffic for such purely local operations.

e If the source memory and destination memory regions overlap (but do not exactly coincide) the resulting
value is undefined

3.2 Blocking memory-to-memory Transfers

3.2.0.1 gasnet_get, gasnet_put

void gasnet_get (void *dest, gasnet_node_t node, void *src, size_t nbytes)

void gasnet_put (gasnet_node_t node, void *dest, void *src, size_t nbytes)
Blocking get/put operations for aligned data. The get operation fetches nbytes bytes from the address src
on node node and places them at dest in the local memory space. The put operation sends nbytes bytes
from the address src in the local address space, and places them at the address dest in the memory space of
node node. A call to these functions blocks until the transfer is complete, and the contents of the destination
memory are undefined until it completes. If the contents of the source memory change while the operation is
in progress the result will be implementation-specific. The src and dest addresses (whether local or remote)
must be properly aligned for accessing objects of size nbytes. nbytes must be >= 0 and has no maximum
size, but implementations will likely optimize for small powers of 2.

3.2.0.2 gasnet_get_bulk, gasnet_put_bulk

void gasnet_get_bulk (void *dest, gasnet_node_t node, void *src, size_t nbytes)

void gasnet_put_bulk (gasnet_node_t node, void *dest, void *src, size_t nbytes)
Blocking get/put operations for bulk (unaligned) data. These function similarly to the aligned get/put
operations above, except the data is permitted to be unaligned, and implementations are likely to optimize
for larger sizes of nbytes.

3.2.0.3 gasnet_memset

void gasnet_memset (gasnet_node_t node, void *dest, int val, size_t nbytes)
Blocking operation that has the same effect as if the dest node had executed the POSIX call memset (dest,
val, nbytes). As with puts, the destination memory must fall entirely within the memory area registered
for remote access by the dest node (see gasnet_attach).

Chapter 3: Extended API 20
3.3 Non-blocking memory-to-memory transfers

The following functions provide non-blocking, split-phase memory access to shared data.

All such non-blocking operations require an initiation (generally a put or get) and a subsequent synchronization
on the completion of that operation before the result is guaranteed.

There are two basic categories of non-blocking operations, defined by the synchronization mechanism used:

"explicit handle" (nb) operations
These operations return a specific handle from the initiation that is used for synchronization. The
handle can be used to synchronize a specific subset of the nb operations in-flight

“implicit handle" (nbi) operations
These operations don’t return a handle from the initiation - synchronization is accomplished by calling
a synchronization routine that synchronizes all outstanding nbi operations.

3.3.1 Synchronization semantics of non-blocking data transfers

Successful synchronization of a non-blocking get operation means the local result is ready to be examined, and
will contain a value held by the source location at some time in the interval between the call to the initiation
function and the successful completion of the synchronization (note this specifically allows implementations to delay
the underlying read until the synchronization operation is called, provided they preserve the blocking semantics
of the synchronization function).

Successful synchronization of a put operation means the source data has been written to the destination location
and get operations issued subsequently by any thread (or load instructions issued by the destination node) will
receive the new value or a subsequently written value (assuming no other threads are writing the location)

Note that the order in which non-blocking operations complete is intentionally unspecified - the system is free
to coalesce and/or reorder non-blocking operations with respect to other blocking or non-blocking operations,
or operations initiated from a separate thread - the only ordering constraints that must be satis